A-cordial graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4-prime Cordial Graphs Obtained from 4-prime Cordial Graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣∣vf (i)− vf (j)∣∣ 6 1, i, j ∈ {1, 2, . . . , k} and ∣∣ef (0)− ef (1)∣∣ 6 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled ...

متن کامل

A note on 3-Prime cordial graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

Uniformly cordial graphs

LetG be a graph with vertex set V (G) and edge setE(G). A labeling f : V (G) → {0, 1} induces an edge labeling f ∗ : E(G) → {0, 1}, defined by f ∗(xy) = |f (x) − f (y)| for each edge xy ∈ E(G). For i ∈ {0, 1}, let ni(f ) = |{v ∈ V (G) : f (v) = i}| and mi(f )=|{e ∈ E(G) : f ∗(e)= i}|. Let c(f )=|m0(f )−m1(f )|.A labeling f of a graphG is called friendly if |n0(f )−n1(f )| 1. A cordial labeling ...

متن کامل

k-Remainder Cordial Graphs

In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1991

ISSN: 0012-365X

DOI: 10.1016/0012-365x(91)90254-y